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Abstract 

The purpose of this paper is to establish a general super hedging formula under a pricing set Q . We will compute 

the price and the strategies for hedging an European claim and simulate that using different approaches including 

Dirichlet priors. We study Dirichlet processes centered around the distribution of continuous-time stochastic 

processes such as a continuous time Markov chain. We assume that the prior distribution of the unobserved 

Markov chain driving by the drift and volatility parameters of the geometric Brownian motion (GBM) is a 

Dirichlet process. We propose an estimation method based on Gibbs sampling.  

  

I. Introduction 
Models in which parameters move between a 

fixed number of regimes with switching controlled by 

an unobserved stochastic process, are very popular in 

a great variety of domains (Finance, Biology, 

Meteorology, Networks, etc.). This is notably due to 

the fact that this additional flexibility allows the model 

to account for random regime changes in the 

environment. In this paper we consider the estimation 

problem for a model described by a stochastic 

differential equation (SDE) with Markov 

regime-switching (MRS), i.e., with parameters 

controlled by a finite state continuous-time Markov 

chain (CTMC). Such a model was used, for example, 

in Deshpande and Ghosh (2008) to price options in a 

regime switching market. In such a setting, the 

parameter estimation problem poses a real challenge, 

mainly due to the fact that the paths of the CTMC are 

unobserved. A standard approach consists in using the 

celebrated EM algorithm (Dempster, Laird, Rubin, 

1977) as proposed for example in Hamilton (1990). 

Elliott, Malcolm and Tsoi (2003) study this problem 

using a filtering approach. 

In the first part of work, we consider ),,( PF  

be a probability space endowed with a filtration 

TF tt )(  with ][0,= TT  and T  is the time 

Horizon. We consider a financial market which is 

composed of a risky asset with the price process 

TttSS )(=  and a risk free asset taken as a 

numéraire with the price process is equal to one at any 

time for simplicity. Let )(SM  be the set of all P
-absolutely continuous martingale measures of the 

process S  and )(SeM  the subset of the equivalent 

ones. We suppose that )(SeM  and consider the 

pricing set Q  as the collection of probabilities 

)(SMQ  that satisfy ],[)( ttTt dcX Q  for all 

Tt  for some fixed processes c  and d  such that 

)(<<)( TtttTt XmdcXm   with 

)(=)( )( XesssupXm tSt QMQ  and TX  is the 

payoff of a fixed positive European claim. 

Our goal in this project can be decomposed in 

two parts: 

1.  In the first part we will establish a general 

super hedging formula under the pricing set Q . We 

will state that for any positive Q -super martingale 

TttY )( , there exists some QQ , an 
3R -valued 

predictable process Ttt )(  and an increasing 

process TttC )(  such that for all Tt  we have:  

,.=
0

0 tss

t

t CdVYY  
Q  

with  

,..
00

QQQ ss

t

ss

T

t dVdV   




  

for all QQ   with )(= VV tt QQ
 and 

),(1,= TT XSV . Our work will be based mainly on 

the optional decomposition theorem stated in [1]. 

 

2.  In the second part we apply the results of part 

one to the following model: we suppose that the 

process S  is solution of the stochastic differential 

equation:  

,= ttttt dWSYdtSdS   

and the process Y  satisfies the stochastic differential 

equation:  

,)(= tttt dBYdtYbadY   
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where BW ,  are two correlated Brownian motions, 

 , a  and b  are real parameters. Following 

notations of the first part we define 

,0)(max= KSX TT   the payoff of an European 

call option with strike K , )(= Ttt Xmc   and 

)(= Ttt Xmd   with 1<0  . We will compute 

the price and the strategies for hedging an European 

claim and simulate that using different approaches 

including Dirichlet priors. 

In the second part of this paper, we propose a 

bayesian estimation, the aim being to find a pair 

(parameters, CTMC path) with likelihood as large as 

possible. approach. We refer the reader to Schnatter 

(2006) for a wider discussion on Markov switching 

models and the comparative advantages of the 

Bayesian approach. Standard priors are placed on the 

parameters space but, as the CTMC paths are 

unobserved, a large number of paths are drawn from a 

Dirichlet process placed as a prior on the path space of 

the CTMC. The complete model then appears as a 

Hierarchical Dirichlet Model (HDM), as in Ishwaran, 

James and Sun (2000) and Ishwaran and James 

(2002). 

 

II. Main result 
In this section we suppose the following 

assumption ( H): 

1.  The two adapted processes c  and d  are local 

)(SM -super martingales.  

2.  There exists some 
dR -valued adapted process 

L  such that for all QQ , there exists some 
dRR 3

-valued predictable process 
Q  with 

ttt dLdV .= QQ  .  

 

Now we state the main result: 

Under the assumption ( H), for any positive Q -super 

martingale TttY )( , there exists some QQ , two 

predictable processes 
21,  and an increasing 

process TttC )(  such that for all Tt  we have:  

,= 2

0

1

0
0 tss

t

ss

t

t CdXdSYY  
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for all QQ  . 

 

Proof. To prove this theorem we should apply theorem 

3.2 in [1] and state that:   

1.  The pricing set Q  is m-stable.  

2.  The set },{= QQQ VD  is progressively 

arbitrage free.  

3.  The pricing set Q  is optionally m-stable wrt the 

finite viable portfolio V .  

4.  The set }||:)({:=)( AXDintXDintA   

is closed in 
0L  for all random variable A  

with  

 

 .:.=)( 3

0
processepredictablvaluedanisanddVDint ss

T

 RQQ QQQ 

 

For assertion 1, let   be a stopping time and 

QQQ 21,  with their respective densities 
21, ZZ

. We define the probability Q  with density 
221 /=  ZZZZ . We shall prove that QQ . Indeed 

the set )(SM  is m-stable so )(SMQ  and for 

fixed Tt  we get for <t ,  

 

  ],,[)](),([)(=)( 1121

ttttTtTt dcdcXX   QQQQQ

 

and for t ,  

 ].,[)(=)( 2

ttTtTt dcXX QQ  

So QQ . 

For assertion 2, and thanks to assumption ( H2) we get 

that:  

.:.=
0 
















 QQ

T

Q

t
ss

t

dLD   

Then D  is progressively arbitrage free. For assertion 

3, we have  

 

 ..],[}{{1})(:= sadcSV ttttt   QPQQ T 

 

So by applying assertion 2 and corollary 2.8 in [1], we 

deduce that Q  is optionally m-stable wrt the finite 

viable portfolio V . For assertion 4, and thanks to 

assumption ( H2) we get that:  

 

 .:.=)(
0

epredictablisanddLDint sss

T
QQQ QQ  

 

From [2], we deduce that the set )(Dint  is closed in 

0L  and so the set )(DintA  is closed in 
0L . 

 

Now for super hedging an European claim, we obtain 

the following result as an immediate consequence of 

theorem 2(`)@. 

 

Corollary 1 Under the assumption ( H), for any 

positive random variable Y , there exists some 
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QQ , two predictable processes 
21,  and a 

positive random variable TC  such that:  
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  and  
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for all QQ  . 

 

III. Application 

In this section we suppose that the process S  is 

solution of the stochastic differential equation:  

,= ttttt dWSYdtSdS   

where the process Y  satisfies the stochastic 

differential equation:  

,)(= tttt dBYdtYbadY   

where BW ,  are two correlated Brownian 

motions, ba,,  and   are real parameters. 

Following notations of the last section we define 

,0)(max= KSX TT   the payoff of an European 

call option with strike K , )(= Ttt Xmc   and 

)(= Ttt Xmd   with 1<0  . It is very known 

that the set )(SM  is the set of probabilities 
Q  

with density given by  

.
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We obtain the following result  For any positive 

random variable Y , there exists some QQ , two 

predictable processes 
21,  and a positive random 

variable TC  such that:  
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for all QQ  . 

 

In this section we consider an application of the 

last section using hierarchical model us follows:  

 

IV. Markov regime switching with 

Dirichlet prior 

In this section, we take H= , the distribution 

of a continuous time Markov chain on a finite set of 

states and we propose a new hierarchical model that is 

specified, as an example, in the setting of 

mathematical finance. Of course, this can be similarly 

used in many other cases. We consider the 

Black-Scholes SDE in random environment with a 

Dirichlet prior on the path space of the chain, the states 

of the chain representing the environment due to the 

market. We model the stock price using a geometric 

Brownian motion with drift and variance depending 

on the state of the market. The state of the market is 

modeled as a continuous time Markov chain with a 

Dirichlet prior. In what follows, the notation   will 

be used to denote the variance rather than the standard 

deviations. 

 

The following notations will be adopted:   

1.  n  will denote the number of observed data and 

also the length of an observed path.  

2.  M  will denote the number of states of the 

Markov chain.  

3.  The state space of the chain will be denoted by 

}.1:{= MiiS    

4.  N  will denote the number of simulated paths.  

5.  m  will denote the number of distinct states of a 

path.  

 

• The stock price follows the following SDE:  

0,,)()(=  tdBXdtX
S

dS
ttt

t

t   

where tB  is a standard Brownian motion. By the 

Ito’s formula, the process )(log= tt SZ  satisfies the 

SDE,  

 

0,,)()(=  tdBXdtXdZ tttt   

where ).(
2

1
)(=)( ttt XXX    The observed 

data is of the form .,,, 10 nZZZ    

• The process )( tX  is assumed to be a continuous 

time Markov process taking values in the set 

}.1:{= MiiS   The transition probabilities of 

this chain are denoted by ,ijp  Sji ,  and the 

transition rate matrix is SjiijqQ ,0 )(=  with  

.,,=,=0,> Sjiqqandjiifpq ij

ij

iiijiiji  




 

Then, conditional on the path 

)/(log==},0,{ 11  ttttts SSZZYnsX  

are i.i.d. ),(
t

X
t

X N , .,2,1,= nt   
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• For each ,,2,1,= Mi   the priors on )(= ii   

and )(= ii   are specified by  

 

0,>),(0,),,( AAwith
ind

i N:N:  

   
(1) 

).,( 21  
ind

i :
                

                (2) 

  

• The Markov chain 0},{ tX t  has prior 

),( HD  where H  is a probability measure on the 

path space of cadlag functions ).),([0, SD   The 

initial distribution according to H  is the uniform 

distribution ),1/,,(1/=0 MM   and the 

transition rate matrix is Q  with 1)1/(= Mpij  

and 0>= i . Thus the Markov chain under Q  

will spend an exponential time with mean 1/  in any 

state i  and then jump to state ij   with probability 

1).1/( M
 

A realization of the Markov chain from the above 

prior is generated as follows: Generate a large number 

of paths }0:{= nsxX i

si  , ,,2,1,= Ni   

from .H  Generate the vector of probabilities 

),1,=,( Nipi   from a Poisson Dirichlet 

distribution with parameter ,  using stick breaking. 

Then draw a realization of the Markov chain from 
 

,=
1=

i
Xi

N

i

pp                                    (3) 

 which is a probability measure on the path space 

).),([0, SnD  The parameter   is chosen to be 

small so that the variance is large and hence we obtain 

a large variety of paths to sample from at a later stage. 

The prior for   is given by,  

).,( 21  :
            

                       (4) 

  

V. Estimation 
Estimation is done using the simulation of a large 

number of paths of the Markov chain which will be 

selected according to a probability vector (generated 

by stick-breaking) and then using the blocked Gibbs 

sampling technique. This technique uses the posterior 

distribution of the various parameters. 

To carry out this procedure we need to compute 

the following conditional distributions. We denote by 

,  and  , the current values of the vectors 

),,,( 21 n  , ),,,( 21 n  , respectively. 

Let Y  be the vector of observed data ).,,( 1 nYY   

Let ),,,(= 21 nxxxX   be the vector of current 

values of the states of the Markov chain at times 

,,2,1,= nt   respectively. Let 

),,(= **

1

*

mxxX   be the distinct values in .X    

 

•  Conditional for .   For each 
*Xj  draw  

  ),,(,,,| **

jj

ind

j YX  N:
           

   (5) 

 where  

,=
=:

**














 






j

t

j
t

Xt

jj

Y
 

 

,
1

=

1

*





















j

j

j

n
 

and jn  being the number of times j  occurs in .X  

For each ,\ *XXj  independently simulate 

).,(  N:j   

    •  Conditional for .   For each 
*Xj  draw  

  ),,
2

(,,| *

2,1 j

j
ind

j

n
YK  :        (6) 

 where  

.
2

)(
=

2

=:

2,

*

2,

jt

j
t

Xt

jj

Y 



   

Also for each ,\ *XXj  independently simulate 

).,( 21  :j  

 

•  Conditional for .X    

  ,| *

1=
i

Xi

N

i

ppX :                          (7) 

 where  

,)
)(2

1
(

2)(
2

1

1/2

}=
,*

,{1=

*

i

gd
Y

g

gg
i
d

xd

m

g

i pep









    

(8) 

 where ),,( ,*,*

1

i

m

i xx   denote the current 

)(= imm  unique values of ,iX  .,1,= Ni    

 

•  Conditional for .p   

1,,3,2,=,)(1)(1=,= **

1

*

1

*

11   NkVVVpandVp kkk 

                                          (9) 

 where  
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),,(1
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 kr  being the number of 
i

lx ’s which equal k .  

 

•  Conditional for  .  

  ,)(1log1,| *
1

1=

21 







 



i

N

i

VNp  :  

where the 
*V  values are those obtained in the 

simulation of p  in the above step.  

 

•  Conditional for  .   

  ),,(| **  N:                      (10) 

 where  

,=
1=

*
*

j

M

j







   

and  

.
1

=

1

*













A

M


  

  

5.1  Real data 

We have applied our algorithm to the index data 

of the Europian Stock Exchange. For this dataset we 

have, 250=n , 1=t , and we deal with 

100=N  of paths while Gamma(2,  4) is the prior 

for .  

With the above choice, we obtain 6  regimes for 

which the estimates for the mean, variance and 

stationary probabilities are as follows:  

 

   R 1   R 2   R 3   R 4   R 5   R 6  
    0.001124   -0.009479   0.000629   -0.004579   0.000829  0.001109 

    2.9132 e-05   7.2166 e-05   2.3023 e-05   7.3800 e-05   1.186 e-05   3.3372 e-05  
    20 %    3 %    29 %    5 %    10 %    33 %   

 

The most frequent Markov chain path, its parameters i s and the matrix of transition probability 

61, )(  jijip  are respectively equal to: 

3 5 3 6 3 6 3 6 1 6 5 1 3 6 3 5 3 3 6 6 5 6 3 6 1 1 4 1 6 1 3 3 6 6 6 3 1 3 3 3 6 3 3 3 4 5 6 6 6 6 4 6 1 1 1 6 

6 6 6 6 1 3 3 3 1 6 1 3 3 5 6 3 3 1 6 5 4 1 3 6 4 6 3 3 5 6 3 6 2 3 6 1 3 3 6 1 6 6 5 5 1 1 5 3 5 3 3 6 1 6 5 6 1 6 6 3 1 

6 3 1 1 6 2 3 6 6 6 3 3 2 6 6 6 1 3 3 6 6 3 1 3 6 6 1 6 6 1 1 6 1 5 3 5 1 3 5 3 4 1 3 3 5 3 1 3 6 6 6 1 3 5 6 5 3 3 6 3 6 

1 3 5 6 6 6 5 1 6 3 3 1 1 6 6 6 3 6 1 3 6 3 6 6 6 6 6 3 6 3 6 6 4 6 3 6 1 1 6 4 6 1 3 4 3 6. 

 1    2    3    4    5    6   

0.8   1   0.7   1   0.95   0.75  

 

 





























0.1340.0770.3840.0380.36

0.360.0520.4200.157

0.50.125000.375

0.540.20.0620.020.16

0.33000.660

0.420.060.030.480

  

  

VI. Conclusion 
A Bayesian approach to estimation for a regime 

switching geometric Brownian motion is proposed. 

The algorithm while being computationally intensive 

is able to segregate the different regimes based on the 

drift and volatility, thus giving useful insights into the 

behavior of the market. It has been observed 

empiricaly that markets fluctuate between periods of 

high, moderate and low volatilities. The above 

estimation procedure provides a clear quantitative 

picture of the number of regimes and an estimate of 

the drifts and volatilities in these regimes. Estimation 

of current market state is also easier using the 

algorithm proposed compared to models using 

continuous stochastic volatility models. Given an 

estimate of the regime, the algorithm also gives an 

idea of likely duration for which the regime is likely to 

persist and the distribution of the regimes that may 

follow. 
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